Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Shoulder Elbow Surg ; 33(1): 164-171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37507001

RESUMO

BACKGROUND: Stemless anatomic humeral components are commonly used and are an accepted alternative to traditional stemmed implants in patients with good bone quality. Presently, little literature exists on the design and implantation parameters that influence primary time-zero fixation of stemless reverse humeral implants. Accordingly, this finite element analysis study assessed the surgical implantation variable of neck-shaft angle, and its effect on the primary time-zero fixation of reversed stemless humeral implants. METHODS: Eight computed tomography-derived humeral finite element models were used to examine a generic stemless humeral implant at varying neck-shaft angles of 130°, 135°, 140°, 145°, and 150°. Four loading scenarios (30° shoulder abduction with neutral forearm rotation, 30° shoulder abduction with forearm supination, a head-height lifting motion, and a single-handed steering motion) were employed. Implantation inclinations were compared based on the maximum bone-implant interface distraction detected after loading. RESULTS: The implant-bone distraction was greatest in the 130° neck-shaft angle implantation cases. All implant loading scenarios elicited significantly lower micromotion magnitudes when neck-shaft angle was increased (P = .0001). With every 5° increase in neck-shaft angle, there was an average 17% reduction in bone-implant distraction. CONCLUSIONS: The neck-shaft angle of implantation for a stemless reverse humeral component is a modifiable parameter that appears to influence time-zero implant stability. Lower, more varus, neck-shaft angles increase bone-implant distractions with simulated activities of daily living. It is therefore suggested that humeral head osteotomies at a higher neck-shaft angle may be beneficial to maximize stemless humeral component stability.


Assuntos
Artroplastia do Ombro , Artroplastia de Substituição , Articulação do Ombro , Humanos , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia , Atividades Cotidianas , Cabeça do Úmero/cirurgia , Desenho de Prótese
2.
JSES Int ; 7(6): 2445-2453, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969503

RESUMO

Background: Shoulder arthroplasty humeral stem design has evolved to include various shapes, coatings, lengths, sizes, and fixation methods. While necessary to accommodate patient anatomy characteristics, this creates a surgical paradox of choice. The relationship between the surgeon's selection of short-stem implant size and construct stiffness, resistance to subsidence and micromotion has not been assessed. Methods: Eight paired cadaveric humeri were reconstructed with surgeon-selected (SS) and 2-mm diametrically larger (SS+2) short-stemmed press-fit implants. Each reconstruction was subjected to 2000 cycles of 90° forward flexion loading, and stem subsidence and micromotion were measured using optical tracking. Compressive stiffness of the stem-bone reconstruction was then assessed by applying a load in-line with the stem axis that resulted in 5 mm of stem subsidence. Results: Increasing stem size by 2 mm resulted in the construct stiffness more than doubling compared to SS stems (-741 ± 243 N/mm vs. -334 ± 120 N/mm; P = .003; power = 0.971). These larger stems also subsided significantly less than their SS counterparts (SS: 1.2 ± 0.6 mm; SS+2: 0.5 ± 0.5 mm; P = .029; power = 0.66), though there were no significant changes in micromotion (SS: 169 ± 59 µm; SS+2: 187 ± 52 µm; P = .506; power = 0.094). Conclusions: The results of this study highlight the importance of proper short-stem sizing, as a relatively small 2 mm increase in diametral size was observed to significantly impact construct stiffness, which could increase the risk of stress shielding and implant loosening. Future work should focus on developing tools that objectively quantify bone quality and aid surgeons in selecting the appropriate size short-stem humeral implants for a particular patient.

3.
J Shoulder Elbow Surg ; 32(10): 1988-1998, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37230287

RESUMO

BACKGROUND: The use of uncemented humeral stems in total shoulder arthroplasty (TSA) is known to be associated with stress shielding. This may be decreased with smaller stems that are well-aligned and do not fill the intramedullary canal; however, the effect of humeral head positioning and incomplete head backside contact has not yet been investigated. The purpose of this study was to quantify the effect of changes in humeral head position and incomplete head backside contact on bone stresses and expected bone response following reconstruction. METHODS: Three-dimensional finite element models of 8 cadaveric humeri were generated, which were then virtually reconstructed with a short-stem implant. An optimally sized humeral head was then positioned in both a superolateral and inferomedial position for each specimen that was in full contact with the humeral resection plane. Additionally, for the inferomedial position, 2 incomplete humeral head backside contact conditions were simulated whereby contact was defined between only the superior or inferior half of the backside of the humeral head and the resection plane. Trabecular properties were assigned based on computed tomography attenuation and cortical bone was applied uniform properties. Loads representing 45° and 75° of abduction were then applied, and the resulting differentials in bone stress versus the corresponding intact state and the expected time-zero bone response were determined and compared. RESULTS: The superolateral position reduced resorbing potential in the lateral cortex and increased resorbing potential in the lateral trabecular bone, while the inferomedial position produced the same effects but in the medial quadrant. For the inferomedial position, full backside contact with the resection plane was best in terms of changes in bone stress and expected bone response, although a small region of the medial cortex did experience no load transfer. The implant-bone load transfer of the inferior contact condition was concentrated at the midline of the backside of the humeral head, leaving the medial aspect largely unloaded as a result of the lack of lateral backside support. DISCUSSION: This study shows that inferomedial humeral head positioning loads the medial cortex at the cost of unloading the medial trabecular bone, with the same occurring for the superolateral position except that the lateral cortex is loaded at the cost of unloading the lateral trabecular bone. Inferomedial positioned heads also were predisposed to humeral head lift-off from the medial cortex, which may increase the risk of calcar stress shielding. For the inferomedial head position, full contact between the implant and resection plane was preferable.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Humanos , Cabeça do Úmero/cirurgia , Tomografia Computadorizada por Raios X , Desenho de Prótese , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia
4.
J Shoulder Elbow Surg ; 32(2): 232-239, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36007865

RESUMO

BACKGROUND: Total shoulder arthroplasty (TSA) implants have evolved to include more anatomically shaped components that better replicate the native state. The geometry of the humeral head is nonspherical, with the frontal diameter of the base of the head being up to 6% larger than the sagittal diameter. Despite this, most TSA humeral head implants are spherical, meaning that the diameter must be oversized to achieve complete coverage, resulting in articular overhang, or portions of the resection plane will remain uncovered. It is suggested that implant-bone load transfer between the backside of the humeral head and the cortex on the resection plane may yield better load-transfer characteristics if resection coverage were properly matched without overhang, thereby mitigating proximal stress shielding. METHODS: Eight paired cadaveric humeri were prepared for TSA by an orthopedic surgeon who selected and prepared the anatomic humeral resection plane using a cutting guide and a reciprocating sagittal saw. The humeral head was resected, and the resulting cortical boundary of the resection plane was digitized using a stylus and an optical tracking system. To simulate optimal sizing of both circular and elliptical humeral heads, both circles and ellipses were fit to the traces. Two extreme scenarios were also investigated: upsizing until 100% total coverage and downsizing until 0% overhang. RESULTS: By switching from a spherical (circular) to an ellipsoid (elliptical) humeral head, a small, 2.3% ± 0.3% increase in total coverage occurred (P < .001), which led to a large, 19.5% ± 1.3% increase in cortical coverage (P < .001). Using a circular head resulted in 2.0% ± 0.1% greater overhang (P < .001), defined as a percentage of the total enclosed area that exceeded the bounds of the humeral resection. As a result of increasing the head size until 100% resection coverage occurred, the ellipse produced 5.4% ± 3.5% less overhang than the circle (P < .001). When the head size was decreased until 0% overhang occurred, total coverage was 7.5% ± 2.8% greater for the ellipse (P < .001) and cortical coverage was 7.9% ± 8.2% greater for the ellipse (P = .01). Cortical coverage was greater for circular heads when the head size was shrunk below -2.25% of the optimal fitted size. DISCUSSION: Reconstruction with ellipsoid humeral heads can provide greater total resection and cortical coverage than spherical humeral heads while avoiding excessive overhang; however, cortical coverage can be inferior when undersized. These initial findings suggest that resection-matched humeral heads may yield benefits worth pursuing in the next generation of TSA implant design.


Assuntos
Artroplastia do Ombro , Artroplastia de Substituição , Prótese Articular , Articulação do Ombro , Humanos , Cabeça do Úmero/cirurgia , Articulação do Ombro/cirurgia , Artroplastia de Substituição/métodos
5.
Shoulder Elbow ; 14(1): 48-54, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154402

RESUMO

BACKGROUND: The purpose of this biomechanical simulator study was primarily to compare latissimus dorsi to lower trapezius tendon transfers for active external rotation and the pectoralis major transfer for internal rotation after reverse shoulder arthroplasty. Secondarily, the role of humeral component lateralization on transfer function was assessed. METHODS: Eight rotator cuff deficient cadavers underwent reverse shoulder arthroplasty with an adjustable lateralization humeral component. Latissimus dorsi and lower trapezius transfers were compared for active external rotation restoration and pectoralis major transfer for internal rotation restoration. Internal rotation/external rotation torques were measured for each lateralization at varying abduction and internal rotation/external rotation ranges-of-motion. RESULTS: The lower trapezius transfer generated, on average, 1.6 ± 0.2 nm more torque than the latissimus dorsi transfer (p < 0.001). The internal rotation/external rotation torques of all tendon transfers decreased as abduction increased (p < 0.01). At 0° elevation, reverse shoulder arthroplasty humeral component lateralization had a significant positive effect on tendon transfer torque at 60° internal rotation and external rotation (p < 0.01). DISCUSSION: Both the lower trapezius and the latissimus dorsi tendon transfers were effective in restoring active external rotation after reverse shoulder arthroplasty; however, the lower trapezius generated significantly more torque. Additionally, the pectoralis major transfer was effective in restoring active internal rotation. All tendon transfers were optimized with greater humeral component lateralization.

6.
J Orthop Res ; 40(3): 674-684, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33969537

RESUMO

Stress shielding of the proximal humerus following total shoulder arthroplasty (TSA) can promote unfavorable bone remodeling, especially for osteoporotic patients. The objective of this finite element (FE) study was to determine if a hollow, rather than solid, titanium stem can mitigate this effect for healthy, osteopenic, and osteoporotic bone. Using a population-based model of the humerus, representative average healthy, osteopenic, and osteoporotic humerus FE models were created. For each model, changes in bone and implant stresses following TSA were evaluated for different loading scenarios and compared between solid versus hollow-stemmed implants. For cortical bone, using an implant decreased von Mises stress with respect to intact values up to 34.4%, with a more pronounced effect at more proximal slices. In the most proximal slice, based on changes in strain energy density, hollow-stemmed implants outperformed solid-stemmed ones through reducing cortical bone volume with resorption potential by 11.7% ± 2.1% (p = .01). For cortical bone in this slice, the percentage of bone with resorption potential for the osteoporotic bone was greater than the healthy bone by 8.0% ± 1.4% using the hollow-stemmed implant (p = .04). These results suggest a small improvement in bone-implant mechanics using hollow-stemmed humeral implants and indicate osteoporosis could exacerbate stress shielding to some extent. The hollow stems maintained adequate strength and using even thinner walls may further reduce stress shielding. After further developing these models, future studies could yield optimized implant designs tuned for varying bone qualities.


Assuntos
Osteoporose , Ombro , Análise de Elementos Finitos , Humanos , Úmero/cirurgia , Osteoporose/cirurgia , Desenho de Prótese , Estresse Mecânico
7.
J Orthop Res ; 40(9): 2169-2178, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34914123

RESUMO

The use of uncemented humeral stems in total shoulder arthroplasty (TSA) is associated with stress shielding. Shorter length stems have shown to decrease stress shielding; however, the effect of stem varus-valgus alignment is currently not known. The purpose of this study was to quantify the effect of short stem distal humeral endosteal contact due to varus-valgus angulation on bone stresses after TSA. Three-dimensional models of eight male cadaveric humeri were constructed from computed tomography data. Bone models were reconstructed with a short stem humeral component implant in three positions (standard, varus, and valgus). Modeling was performed at 45° and 75° of abduction and the resulting differentials in bone stress compared to the intact state and the expected time-zero bone response were determined. In cortical and trabecular bone, the standard position (STD) altered bone stress less than the valgus (VAL) and varus (VAR) positions relative to the intact state. For both cortical (p = 0.033) and trabecular (p = 0.012) bone, the VAL position produced a larger volume of bone with resorbing potential compared to the STD position.


Assuntos
Artroplastia do Ombro , Articulação do Cotovelo , Infecções Sexualmente Transmissíveis , Humanos , Úmero/diagnóstico por imagem , Masculino , Desenho de Prótese
8.
Shoulder Elbow ; 13(6): 610-619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34804210

RESUMO

BACKGROUND: Scapular spine insufficiency fractures following reverse shoulder arthroplasty are poorly understood. There exists limited literature regarding the role of reverse shoulder arthroplasty lateralization on scapular spine strains and fractures. The purpose of this cadaveric biomechanical simulator study was to evaluate the role of glenoid lateralization on scapular spine strain. METHODS: Eight cadaveric shoulders were tested using an in-vitro simulator. A custom modular reverse shoulder arthroplasty was implanted that allowed for in-situ glenoid lateralization adjustment. Scapular spine strain was measured by strain gauges placed in clinically relevant Levy zones along the scapular spine. All specimens were tested in loaded forward elevation and abduction. RESULTS: Glenoid lateralization from 0 to 5 mm caused negligible changes in scapular spine strains. Lateralization from 5 to 10 mm, however, caused significant increases in strain at 0° forward elevation in all strain gauges (p < 0.026). Strains measured in Levy zone 2 were significantly higher than all other locations (p < 0.039). Additionally, forward elevation resulted in significantly higher strain values than abduction (p = 0.001). CONCLUSIONS: Glenoid lateralization is an important parameter in reverse shoulder arthroplasty; however, our results demonstrate higher degrees of lateralization may place higher strains on the scapular spine. An understanding of reverse shoulder arthroplasty lateralization and scapular spine strains is important to optimize parameters and to mitigate negative effects. LEVEL OF EVIDENCE: Basic Sciences Study, Cadaveric Model, Biomechanics.

9.
JSES Int ; 5(5): 875-880, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34505099

RESUMO

BACKGROUND: The humeral head osteotomy during shoulder arthroplasty influences humeral component height, version and possibly neck-shaft angle. These parameters all potentially influence outcomes of anatomic and reverse shoulder replacement to a variable degree. Patient-specific guides and navigation have been studied and utilized clinically for glenoid component placement. Little, however, has been done to evaluate these techniques for humeral head osteotomies. The purpose of this study, therefore, was to evaluate the use of patient-specific guides and surgical navigation for executing a planned humeral head osteotomy. METHODS: The DICOM images of 10 shoulder computed tomography scans (5 normal and 5 osteoarthritic) were used to print 3D polylactic models of the humerus. Each model was duplicated, such that there were 2 identical groups of 10 models. After preoperative planning of a humeral head osteotomy, Group 1 underwent osteotomy via a patient-specific guide, while group 2 underwent a real time navigated osteotomy with an optically tracked sagittal saw. The cut height (millimeters), version (degrees) and neck-shaft angle (degrees) were recorded and statistically compared between groups. RESULTS: There were no statistically significant differences between patient-specific guides and navigation for osteotomy cut height (P = .45) and humeral version (P = .059). Navigation, however, resulted in significantly less neck-shaft angle error than the patient specific guides (P = .023). Subgroup analysis of the osteoarthritic cases showed statistical significance for navigation resulting in less version error than the patient specific guides (P = .048). CONCLUSION: No significant differences were found between patient specific guides and navigation for recreation of the preoperatively planned humeral head cut height and version. Neck-shaft angle, however, had significantly less deviation from the preoperative plan when conducted with navigation.

10.
JSES Int ; 5(5): 881-888, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34505100

RESUMO

BACKGROUND: Stem size is an important element for successful time zero primary fixation of a press-fit humeral stem in shoulder arthroplasty. Little basic science research, however, has been conducted on the effects of implant thickness and canal fill on load transfer, contact, and stress shielding. The purpose of this finite element study was to determine the effects of varying stem thickness on bone contact, bone stresses, and bone resorption owing to stress shielding. METHODS: Three generic short-stem implant models were developed and varied based on cross-sectional thickness (thinner - 8 mm, medium - 12 mm, thicker - 16 mm). Using a finite element model, three outcome measures were determined (1) the amount of bone-to-implant contact, (2) changes in cortical and trabecular bone stresses from the intact state, and (3) changes in cortical and trabecular strain energy densities which can predict bone remodeling or stress shielding. RESULTS: Increasing the size of the humeral stem had no significant effects on bone-to-implant contact during loading (P > .07). The thinner implant with the lowest canal fill ratio produced significantly lower changes in stress from the intact state in both cortical and trabecular bone (P < .002). In addition, the thinner implant resulted in a substantially lower volume of bone predicted to stress shield and resorb when compared with the medium and thicker stems. DISCUSSION: The results demonstrate that thinner implants and lower canal fill may be beneficial over thicker sizes, provided equal initial fixation can be achieved. The thinner implant has a greater degree of load sharing and increases the mechanical load placed on surrounding bone, reducing the risk of stress shielding and bone resorption.

11.
Shoulder Elbow ; 13(4): 388-395, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34394736

RESUMO

BACKGROUND: Acromial fractures are a substantial complication following reverse shoulder arthroplasty, reported to affect up to 7% of patients. Previous studies have shown that implant placement affects acromial stress during elevation of the arm in the scaption plane. The purpose of this study was to investigate the results of arm loading and variation in plane of elevation on acromial stresses. METHODS: Nine elevation angles (0°-120°), in three planes of elevation (abduction (0°), scaption (30°), and forward elevation (60°)), and three hand loads (0, 2.5, 5 kg) were investigated. Finite element models were generated using computed tomography data from 10 cadaveric shoulders (age 68 ± 19 yrs) to determine acromial stress distributions. Models were created for a lateralized glenosphere (0, 5, 10 mm), inferiorized glenosphere (0, 2.5, 5 mm), and humeral offset (-5, 0, 5 mm). RESULTS: For all planes of elevation (0°, 30°, 60°) and hand loads (0, 2.5, 5 kg) investigated, glenoid lateralization consistently increased acromial stress, glenoid inferiorization consistently decreased acromial stress, and humeral offset proved to be insignificant in altering acromial stress. Abduction resulted in significantly higher peak acromial stresses (p = 0.002) as compared to scaption and forward elevation. CONCLUSIONS: In addition to implant position and design, patient activity, such as plane of elevation and hand loads, has substantial effects on acromial stresses. LEVEL OF EVIDENCE: Basic science study.

12.
JSES Int ; 5(3): 525-531, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34136865

RESUMO

BACKGROUND: Bone quality influences humeral implant selection for shoulder arthroplasty. However, little is known about how well bone near the humeral resection represents more distal cancellous bone. This investigation aimed to quantify the correlations between the apparent density of sites near the humeral head resection plane and cancellous sites throughout the metaphysis. METHODS: Using computed tomography data from 98 subjects, apparent bone density was quantified in 65 regions throughout the proximal humerus. Pearson's correlation coefficient was determined comparing the density between samples from the humeral resection and all supporting regions beneath the resection. Mean correlation coefficients were compared for (i) each sample region with all support regions, (ii) pooling all sample regions within a slice, and (iii) considering sample regions correlated with only the support regions in the same anatomic section. RESULTS: Stronger correlations existed for bone sampled beneath the resection (0.33 ± 0.10≤ r ≤ 0.88 ± 0.10), instead of from the resected humeral head (0.22 ± 0.10≤ r ≤ 0.66 ± 0.14). None of sample region correlated strongly with all support regions; however, strong correlations existed when sample and support regions both came from the same anatomic section. DISCUSSION: Assessments of cancellous bone quality in the proximal humerus should be made beneath the humeral resection not in the resected humeral head; and each anatomic quadrant should be assessed independently.

13.
J Orthop ; 24: 102-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679035

RESUMO

PURPOSE: To compare changes in wrist kinematics after scaphoidectomy and four-corner fusion (4CF), and proximal row carpectomy (PRC). METHODS: Six cadaveric specimens underwent flexion-extension, radial-ulnar deviation and circumduction in an active motion wrist simulator. Native state, "anatomic 4CF", "radial 4CF", and PRC were compared. RESULTS: Radial 4CF reduced wrist extension, while PRC reduced radial deviation. Fusion groups had similar motion profiles. 44%, 41%, and 32% of native circumduction was maintained in PRC, anatomic, and radial 4CF. CONCLUSIONS: Both fusion positions resulted in comparable motion outcomes. Anatomic 4CF was restricted in wrist extension compared to PRC but provided favourable radial deviation.

14.
JSES Int ; 5(2): 277-281, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33681849

RESUMO

BACKGROUND: The optimal insertion location of a latissimus dorsi tendon transfer to restore external rotation after reverse shoulder arthroplasty (RSA) is not well established. The aim of this biomechanical study was to determine the effect of tendon transfer location on external rotation torque, in conjunction with varying RSA humeral component lateralization. We hypothesized that proximal tendon transfers, along with increasing humeral lateralization, would maximize external rotation torque. METHODS: Eight fresh-frozen cadaveric shoulders underwent RSA and were tested on an in vitro shoulder simulator. A latissimus dorsi tendon transfer was tested at three insertion locations (lateral greater tuberosity [Lat-GT]; teres minor footprint [Tm-FP]; lateral shaft [Lat-Shft]), and external rotation torque was measured. Additional test conditions included varying humeral component lateralization (-5, 0, +5, +10, +15 mm), abduction angle (0°, 45°, 90°), and internal/external rotation (-60°, -30°, 0°, 30°, 60°). RESULTS: The Lat-GT and Tm-FP insertions of the latissimus dorsi transfer both generated significantly greater torques (P < .001) than the Lat-Shft. When comparing Lat-GT to Tm-FP, there were no significant differences (P = .362). At 60˚ of external rotation, RSA humeral component lateralization from -5 to +15 mm significantly increased the external rotation torque of Lat-GT by 67% (P = .035), Tm-FP by 43% (P = .001), and of Lat-Shft by 42% (P = .002). CONCLUSION: Latissimus dorsi tendon transfer to the proximal lateral aspect of the greater tuberosity and to the insertion site of the teres minor generated significantly more external rotation torque than transfer to the lateral humeral shaft. In addition, the use of a humeral component with greater offset also substantially increases the torque generated by the tendon transfer.

15.
J Shoulder Elbow Surg ; 30(3): 572-579, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32621980

RESUMO

BACKGROUND: Reverse shoulder arthroplasty (RSA) humeral implant parameters have been previously studied with respect to range of motion, deltoid function, and stability. However, limited literature exists on the influence of humeral design features on scapular spine strain. The purpose of this cadaveric biomechanical simulator study was to evaluate the role of humeral component lateralization and neck-shaft angle (NSA) on scapular spine strain. METHODS: Eight fresh-frozen cadaveric shoulders were tested using an in vitro shoulder simulator. A custom-designed modular RSA system was implanted that allowed for the in situ adjustment of humeral lateralization and NSA. Scapular spine strain was measured by strain gauges placed along the acromion and scapular spine in clinically relevant positions representative of the Levy fracture zones. All testing was conducted in both abduction and forward elevation. RESULTS: In Levy zones 2 and 3, increasing humeral lateralization caused significant incremental decreases in scapular spine strain at 0° and 90° abduction (P < .042). Strain decreases as high as 34% were noted with increases in humeral lateralization from -5 to 15 mm (P = .042). Changing NSA had no statistically significant effect on scapular spine strain (P > .14). CONCLUSIONS: Some humeral implant design features in RSA have effects on scapular spine strain. Humeral component lateralization had significant effects, whereas adjusting NSA resulted in no substantial differences in scapular spine strain. Understanding humeral component variables is important to allow for design optimization of future RSA implants.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Prótese de Ombro , Artroplastia , Humanos , Úmero/cirurgia , Amplitude de Movimento Articular , Articulação do Ombro/cirurgia
16.
J Hand Surg Am ; 46(5): 425.e1-425.e10, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33303325

RESUMO

PURPOSE: All active motion wrist joint simulators have been designed to simulate physiologic wrist motion; however, a main difference among them is the orientation of the forearm (horizontal or vertical with respect to gravity). Moreover, the effect of forearm orientation on experimental results has yet to be quantified, but it may be an important variable. Thus, the purpose of this study was to determine the effect of forearm orientation on wrist kinematics and contact mechanics. METHODS: Eight cadaveric upper limbs were cycled through a flexion-extension motion using an active motion wrist simulator. Motion trials were performed in 3 forearm orientations (gravity-neutral, gravity-flexion, and gravity-extension). A computed tomography-based joint congruency technique was used to examine radiocarpal joint contact and joint contact centroid translation in the 3 tested orientations. RESULTS: At full wrist extension and wrist flexion, radioscaphoid contact area was greatest in the gravity-extension orientation. Radiolunate contact area was similar among all 3 forearm orientations. The radioscaphoid contact centroid was consistent among the 3 tested positions with the wrist in neutral wrist position. In contrast, the radioscaphoid contact centroid translated radially in the gravity-neutral position relative to the gravity-flexion position in extreme extension. There were no differences in radiolunate centroid contact position in the 3 forearm orientations. CONCLUSIONS: This study demonstrates that forearm orientation affects contact mechanics and end-range carpal kinematics. Future biomechanical studies should report forearm orientation and discuss the implication of the forearm orientation used on the experimental results. CLINICAL RELEVANCE: This study provides evidence that the wrist joint is sensitive to forearm positions consistent with activities of daily living and rehabilitation protocols.


Assuntos
Antebraço , Punho , Atividades Cotidianas , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular , Articulação do Punho/diagnóstico por imagem
17.
Shoulder Elbow ; 12(4): 265-271, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788931

RESUMO

BACKGROUND: A resorbable subacromial balloon has been developed to address humeral head migration following posterosuperior rotator cuff tears. The purpose of this experimental assessment was to quantify the effect of balloon augmentation on humeral head position. METHODS: Eight cadaveric shoulders were subjected to 0°, 30°, 60° and 90° of abduction via a shoulder simulator. The deltoid was activated at 40N, then 80N. The subscapularis and infraspinatus with teres minor were then applied independently and together to create four muscle activation states for each deltoid load. The shoulder was tested intact, torn, then with the balloon. The centre of the humeral head was tracked using active optical markers. RESULTS: When the rotator cuff was torn, the humeral head translated superior by 1.4 ± 1 mm overall (P = 0.009). Following balloon augment, the humeral head translated inferiorly by 2 ± 2 mm relative to the intact state (P = 0.042), and significantly more anterior than the intact (3 ± 2 mm; P = 0.005) state. Rotator cuff variation was only significantly different when the balloon was used, with the subscapularis translating the humeral head posteriorly (P = 0.006). DISCUSSION: The subacromial balloon inferiorized the humeral head compared to the torn state. Unexpected anterior humeral head translation was attributed to the posterosuperior balloon placement relative to the humeral head.

18.
J Shoulder Elbow Surg ; 29(10): 2007-2014, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32631503

RESUMO

BACKGROUND: This in vivo kinematic study was developed to ascertain (1) elbow posture and motion during daily activities and (2) to compare motions of the dominant and nondominant elbows. METHODS: Forty-six subjects wore a custom instrumented shirt to continuously measure elbow posture and motion for the waking hours of 1 day. The 3D orientations of each of the forearm and humerus sensors enabled calculation of elbow flexion-extension and pronation-supination angles. RESULTS: The elbow flexion-extension postures that were most common ranged from 60°-100° for both the dominant and nondominant extremities averaging 44% ± 4% and 35% ± 4% of the day, respectively. When elbow flexion motions were calculated, there were a large number of motions over a wide distribution of flexion angles, with the dominant side exhibiting significantly more motions per hour than the nondominant side. CONCLUSION: Both flexion-extension and pronation-supination motions occur more commonly in the dominant arm, and the dominant arm is more commonly in pronation. These data provide a baseline for assessing treatment outcomes, ergonomic studies, and elbow arthroplasty wear testing.


Assuntos
Articulação do Cotovelo/fisiologia , Cotovelo/fisiologia , Antebraço/fisiologia , Atividades Cotidianas , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura , Pronação , Amplitude de Movimento Articular , Supinação , Adulto Jovem
19.
Proc Inst Mech Eng H ; 234(8): 874-883, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32515277

RESUMO

Biomechanics research often requires cadaveric whole bones to be stored in a freezer and then thawed prior to use; however, the literature shows a variety of practices for thawing. Consequently, this is the first study to report the mechanical properties of fully frozen versus fully thawed whole bone as 'proof of principle'. Two groups of 10 porcine ribs each were statistically equivalent at baseline in length, cross-sectional area, and bone mineral density. The two groups were stored in a freezer for at least 24 h, thawed in air at 23 °C for 4 h while temperature readings were taken to establish the time needed for thawing, and once again returned to the freezer for at least 24 h. Mechanical tests to failure using three-point bending were then done on the 'frozen' group immediately after removal from the freezer and the 'thawed' group when steady-state ambient air temperature was reached. Temperature readings over the entire thawing period were described by the line-of-best-fit formula T = (28.34t - 6.69)/(t + 0.38), where T = temperature in degree Celsius and t = time in hours, such that frozen specimens at t = 0 h had a temperature of -17 °C and thawed specimens at t = 1.75 h reached a steady-state temperature of 20 °C-23 °C. Mechanical tests showed that frozen versus thawed specimens had an average of 32% higher stiffness k, 34% higher ultimate force Fu, 28% lower ultimate displacement δu, 40% lower ultimate work Wu, 43% higher elastic modulus E, 37% higher ultimate normal stress σu, and 33% higher ultimate shear stress τu. Whole ribs failed at midspan primarily by transverse cracking (16 of 20 cases), oblique cracking (three of 20 cases), or surface denting (one of 20 cases), each having unique shapes for force versus displacement graphs differentiated mainly by ultimate force location.


Assuntos
Fenômenos Biomecânicos , Osso e Ossos , Congelamento , Estresse Mecânico , Suínos , Animais , Densidade Óssea , Criopreservação , Temperatura
20.
J Orthop Res ; 38(8): 1719-1726, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32017162

RESUMO

Hemiarthroplasty is often preferred to total arthroplasty as it preserves native tissue; however, accelerated wear of the opposing cartilage is problematic. This is thought to be caused by the stiffness mismatch between the implant and cartilage-bone construct. Reducing the stiffness of the implant by changing the material has been hypothesized as a potential solution. This study employs a finite element model to study a concave-convex hemiarthroplasty articulation for various implant materials (cobalt-chrome, pyrolytic carbon, polyether ether ketone, ultra-high-molecular-weight polyethylene, Bionate-55D, Bionate-75D, and Bionate-80A). The effect of the radius of curvature and the degree of flexion-extension was also investigated to ensure any relationships found between materials were generalizable. The implant material had a significant effect (P < .001) for both contact area and maximum contact pressure on the cartilage surface. All of the materials were different from the native state except for Bionate-80A at two of the different flexion angles. Bionate-80A and Bionate-75D, the materials with the lowest stiffnesses, were the closest to the native state for all flexion angles and radii of curvature. No evident difference between materials occurred unless the modulus was below that of Bionate-55D (288 MPa), suggesting that hemiarthroplasty materials need to be less stiff than this material if they are to protect the opposing cartilage. This is clinically significant as the findings suggest that the development of new hemiarthroplasty implants should use materials with stiffnesses much lower than currently available devices.


Assuntos
Artroplastia de Substituição do Cotovelo/instrumentação , Hemiartroplastia/instrumentação , Prótese Articular , Desenho de Prótese , Idoso , Idoso de 80 Anos ou mais , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA